# Get cache hit latency data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-cache-hit-latency-data get /analytics/graphs/cache/latency # Get cache hit rate data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-cache-hit-rate-data get /analytics/graphs/cache/hit-rate # Get cost data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-cost-data get /analytics/graphs/cost # Get error rate data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-error-rate-data get /analytics/graphs/errors/rate # Get errors data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-errors-data get /analytics/graphs/errors # Get feedback data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-feedback-data get /analytics/graphs/feedbacks # Get feedback per ai models data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-feedback-per-ai-models-data get /analytics/graphs/feedbacks/ai-models # Get feedback score distribution data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-feedback-score-distribution-data get /analytics/graphs/feedbacks/scores # Get latency data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-latency-data get /analytics/graphs/latency # Get requests data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-requests-data get /analytics/graphs/requests # Get requests per user data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-requests-per-user-data get /analytics/graphs/users/requests # Get rescued requests data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-rescued-requests-data get /analytics/graphs/requests/rescued # Get status code data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-status-code-data get /analytics/graphs/errors/stacks # Get tokens data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-tokens-data get /analytics/graphs/tokens # Get unique status code data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-unique-status-code-data get /analytics/graphs/errors/status-codes # Get users data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-users-data get /analytics/graphs/users # Get weighted feedback data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/graphs-time-series-data/get-weighted-feedback-data get /analytics/graphs/feedbacks/weighted # Get Metadata Grouped Data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/groups-paginated-data/get-metadata-grouped-data get /analytics/groups/metadata/{metadataKey} # Get Model Grouped Data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/groups-paginated-data/get-model-grouped-data get /analytics/groups/ai-models # Get User Grouped Data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/groups-paginated-data/get-user-grouped-data get /analytics/groups/users # Get User Grouped Data Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/analytics/summary/get-all-cache-data get /analytics/groups/users # Create API Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/api-keys/create-api-key post /api-keys/{type}/{sub-type} # Delete an API Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/api-keys/delete-an-api-key delete /api-keys/{id} # List API Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/api-keys/list-api-keys get /api-keys # Retrieve and API Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/api-keys/retrieve-an-api-key get /api-keys/{id} # Update API Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/api-keys/update-api-key put /api-keys/{id} # Create Config Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/configs/create-config post /configs # List Configs Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/configs/list-configs get /configs # Retrieve Config Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/configs/retrieve-config get /configs/{slug} # Update Config Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/configs/update-config put /configs/{slug} # Delete a user invite Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/user-invites/delete-a-user-invite delete /admin/users/invites/{inviteId} # Invite a User Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/user-invites/invite-a-user post /admin/users/invites Send an invite to user for your organization # Resend a user invite Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/user-invites/resend-a-user-invite post /admin/users/invites/{inviteId}/resend Resend an invite to user for your organization # Retrieve all user invite Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/user-invites/retrieve-all-user-invites get /admin/users/invites # Retrieve an user invite Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/user-invites/retrieve-an-invite get /admin/users/invites/{inviteId} # Remove a user Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/users/remove-a-user delete /admin/users/{userId} # Retrieve a user Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/users/retrieve-a-user get /admin/users/{userId} # Retrieve all users Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/users/retrieve-all-users get /admin/users # Update a user Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/users/update-a-user put /admin/users/{userId} # Create Virtual Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/virtual-keys/create-virtual-key post /virtual-keys #### Azure OpenAI Create virtual key to access your Azure OpenAI models or deployments, and manage all auth in one place. ```py Python from portkey_ai import Portkey client = Portkey( api_key="" ) virtual_key = client.virtual_keys.create( name="Azure-Virtual-Default", provider="azure-openai", note="Azure Note", key="", resourceName="", deploymentConfig=[ { "apiVersion": "2024-08-01-preview", "deploymentName": "DeploymentName", "is_default": True, }, { "apiVersion": "2024-08-01-preview", "deploymentName": "DeploymentNam2e", "is_default": False, }, ], ) print(virtual_key) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' }); async function main() { const key = await client.virtualKeys.create({ name: "Azure-Virtual-Default", provider: "azure-openai", note: "Azure Note", key: "", resourceName: "", deploymentConfig: [ { "apiVersion": "2024-08-01-preview", "deploymentName": "DeploymentName", "is_default": True, }, { "apiVersion": "2024-08-01-preview", "deploymentName": "DeploymentNam2e", "is_default": False, } ] }); console.log(key); } main(); ``` ```py Python from portkey_ai import Portkey client = Portkey( api_key="" ) virtual_key = client.virtual_keys.create( name="Azure-Virtual-entra", provider="azure-openai", note="azure entra", resourceName="", deploymentConfig=[ { "deploymentName": "", "is_default": True, "apiVersion": "2024-08-01-preview", } ], azureAuthMode="entra", azureEntraClientId="", azureEntraClientSecret="", azureEntraTenantId="", ) print(virtual_key) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' }); async function main() { const key = await client.virtualKeys.create({ name: "Azure-Virtual-entra", provider: "azure-openai", note: "azure entra", resourceName: "", deploymentConfig: [ { "deploymentName": "", "is_default": True, "apiVersion": "2024-08-01-preview", } ], azureAuthMode: "entra", azureEntraClientId: "", azureEntraClientSecret: "", azureEntraTenantId: "" }); console.log(key); } main(); ``` ```py Python from portkey_ai import Portkey client = Portkey( api_key="", ) virtual_key = client.virtual_keys.create( name="Azure-Virtual-entra", provider="azure-openai", note="azure entra", resourceName="", deploymentConfig=[ { "deploymentName": "", "is_default": True, "apiVersion": "2024-08-01-preview", } ], azureAuthMode="managed", azureManagedClientId="" # optional ) print(virtual_key) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' }); async function main() { const key = await client.virtualKeys.create({ name="Azure-Virtual-entra", provider="azure-openai", note="azure entra", resourceName="", deploymentConfig=[ { "deploymentName": "", "is_default": True, "apiVersion": "2024-08-01-preview", } ], azureAuthMode="managed", azureManagedClientId="" # optional }); console.log(key); } main(); ``` #### AWS Bedrock Create virtual key to access your AWS Bedrock models or deployments, and manage all auth in one place. ```py Python from portkey_ai import Portkey client = Portkey( api_key="", ) virtual_key = client.virtual_keys.create( name="bedrock-assumed", provider="bedrock", note="bedrock", awsRegion="", awsAuthType="assumedRole", awsRoleArn="arn:aws:iam:::role/", awsExternalId="", ) print(virtual_key) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' }); async function main() { const key = await client.virtualKeys.create({ name: "bedrock-assumed", provider: "bedrock", note: "bedrock", awsRegion: "", awsAuthType: "assumedRole", awsRoleArn: "arn:aws:iam:::role/", awsExternalId: "" }); console.log(key); } main(); ``` #### Vertex AI Create virtual key to access any models available or hosted on Vertex AI. [Docs →](/integrations/llms/vertex-ai) Securely store your provider auth in Portkey vault and democratize and streamline access to Gen AI. # Delete Virtual Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/virtual-keys/delete-virtual-key delete /virtual-keys/{slug} # List Virtual Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/virtual-keys/list-virtual-keys get /virtual-keys # Retrieve Virtual Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/virtual-keys/retrieve-virtual-key get /virtual-keys/{slug} # Update Virtual Key Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/virtual-keys/update-virtual-key put /virtual-keys/{slug} # Add a Workspace Member Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspace-members/add-a-workspace-member post /admin/workspaces/{workspaceId}/users # Remove Workspace Member Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspace-members/remove-workspace-member delete /admin/workspaces/{workspaceId}/users/{userId} # Retrieve a Workspace Member Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspace-members/retrieve-a-workspace-member get /admin/workspaces/{workspaceId}/users/{userId} # Retrieve all Workspace Member Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspace-members/retrieve-all-workspace-members get /admin/workspaces/{workspaceId}/users # Update Workspace Member Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspace-members/update-workspace-member put /admin/workspaces/{workspaceId}/users/{userId} # Create Workspace Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspaces/create-workspace post /admin/workspaces # Delete a Workspace Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspaces/delete-a-workspace delete /admin/workspaces/{workspaceId} # Retrieve a Workspace Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspaces/retrieve-a-workspace get /admin/workspaces/{workspaceId} # Retrieve all Workspaces Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspaces/retrieve-all-workspaces get /admin/workspaces # Update Workspace Source: https://docs.portkey.ai/docs/api-reference/admin-api/control-plane/workspaces/update-workspace put /admin/workspaces/{workspaceId} # Feedback Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/feedback Feedback in Portkey provide a simple way to get weighted feedback from customers on any request you served, at any stage in your app. You can capture this feedback on a generation or conversation level and analyze it based on custom tags by adding meta data to the relevant request. The Feedback API allows you to gather weighted feedback from users on any generation or conversation at any stage within your app. By incorporating custom metadata, you can tag and analyze feedback more effectively. ## API Reference [Create Feedback](/api-reference/admin-api/data-plane/feedback/create-feedback) | [Update Feedback](/api-reference/admin-api/data-plane/feedback/update-feedback) ## SDK Usage The `feedback.create` method in the Portkey SDK provides a way to capture user feedback programmatically. ### Method Signature ```js portkey.feedback.create(feedbackParams); ``` ```py portkey.feedback.create(feedbackParams); ``` #### Parameters * *feedbackParams (Object)*: Parameters for the feedback request, including `trace_id`, `value`, `weight`, and `metadata`. ### Example Usage ```js import Portkey from 'portkey-ai'; // Initialize the Portkey client const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY" // Replace with your Portkey API key }); // Send feedback const sendFeedback = async () => { await portkey.feedback.create({ traceID: "REQUEST_TRACE_ID", value: 1 // For thumbs up }); } await sendFeedback(); ``` ```py from portkey_ai import Portkey # Initialize the Portkey client portkey = Portkey( api_key="PORTKEY_API_KEY" # Replace with your Portkey API key ) # Send feedback def send_feedback(): portkey.feedback.create( trace_id= 'REQUEST_TRACE_ID', value= 0 # For thumbs down ) send_feedback() ``` The Update Feedback API allows you to update existing feedback details # Create Feedback Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/feedback/create-feedback post /feedback This endpoint allows users to submit feedback for a particular interaction or response. # Update Feedback Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/feedback/update-feedback put /feedback/{id} This endpoint allows users to update existing feedback. # Guardrails Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/guardrails **This feature is currently in Private Beta.** Reach out to us at [hello@portkey.ai](mailto:hello@portkey.ai) for more information # Insert a Log Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/insert-a-log post /logs Submit one or more log entries The log object comprises of 3 parts: | Part | Accepted Values | | :--------- | :--------------------------------------------------------------------------------------------------------------------------------- | | `request` | `url`, `provider`, `headers`, `method` (defaults to `post`), and `body` | | `response` | `status` (defaults to 200), `headers`, `body`, `time` (response latency), and `streamingMode` (defaults to false), `response_time` | | `metadata` | `organization`, `user`, tracing info (`traceId`, `spanId`, `spanName`, `parentSpanId`), and any `key:value` pair | # Cancel a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/cancel-a-log-export post /logs/exports/{exportId}/cancel # Create a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/create-a-log-export post /logs/exports # Download a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/download-a-log-export get /logs/exports/{exportId}/download # List a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/list-log-exports get /logs/exports # Retrieve a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/retrieve-a-log-export get /logs/exports/{exportId} # Start a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/start-a-log-export post /logs/exports/{exportId}/start # Update a Log Export Source: https://docs.portkey.ai/docs/api-reference/admin-api/data-plane/logs/log-exports-beta/update-a-log-export put /logs/exports/{exportId} # Introduction Source: https://docs.portkey.ai/docs/api-reference/admin-api/introduction Manage your Portkey organization and workspaces programmatically # Portkey Admin API The Portkey Admin API provides programmatic access to manage your organization, workspaces, and resources. Whether you're automating routine administration tasks, integrating Portkey with your existing systems, or customizing your deployment at scale, this API gives you the tools to control every aspect of your Portkey implementation. ## Understanding the Admin API Ecosystem The Admin API is organized around key capabilities that let you manage different aspects of your Portkey environment. Let's explore what you can build and automate: ### Resource Management At the foundation of Portkey are the resources that define how your AI implementation works. These can all be managed programmatically: Create and manage configuration profiles that define routing rules, model settings, and more. Manage virtual API keys that provide customized access to specific configurations. Create and manage API keys for accessing Portkey services. ### Analytics and Monitoring Once your resources are configured, you'll want to measure performance and usage. The Admin API gives you powerful tools to access analytics data: Retrieve aggregated usage statistics and performance metrics. Access detailed analytics organized by metadata, model, or user. Monitor performance trends, costs, errors, feedback, and usage patterns over time. ### User and Workspace Administration Beyond resources and analytics, you'll need to manage who has access to your Portkey environment: Manage user accounts, permissions, and access. Send and manage user invitations. Create workspaces and manage team membership and permissions within workspaces. ## Authentication Strategy Now that you understand what the Admin API can do, let's explore how to authenticate your requests. Portkey uses a sophisticated access control system with two types of API keys, each designed for different use cases: **Organization-wide access** These keys grant access to administrative operations across your entire organization. Only Organization Owners and Admins can create and manage Admin API keys. **Workspace-specific access** These keys provide targeted access to resources within a single workspace. Workspace Managers can create and manage Workspace API keys. The key you use determines which operations you can perform. For organization-wide administrative tasks, you'll need an Admin API key. For workspace-specific operations, you can use a Workspace API key. ## Access Control and Permissions Model Portkey's hierarchical access control system governs who can use which APIs. Let's examine how roles, API keys, and permissions interact: ```mermaid graph TD A[Organization] --> B[Owner] A --> C[Org Admin] A --> D[Workspaces] B --> E[Admin API Key] C --> E D --> F[Workspace Manager] D --> G[Workspace Member] F --> H[Workspace API Key] E --> I[Organization-wide Operations] H --> J[Workspace-specific Operations] classDef entity fill:#4a5568,stroke:#ffffff,color:#ffffff classDef roles fill:#805ad5,stroke:#ffffff,color:#ffffff classDef keys fill:#3182ce,stroke:#ffffff,color:#ffffff classDef operations fill:#38a169,stroke:#ffffff,color:#ffffff class A,D entity class B,C,F,G roles class E,H keys class I,J operations ``` This access model follows a clear hierarchy: | Role | Can Create Admin API Key | Can Create Workspace API Key | Access Scope | | :----------------- | :----------------------- | :--------------------------- | :------------------------- | | Organization Owner | ✅ | ✅ (any workspace) | All organization resources | | Organization Admin | ✅ | ✅ (any workspace) | All organization resources | | Workspace Manager | ❌ | ✅ (managed workspace only) | Single workspace resources | | Workspace Member | ❌ | ❌ | Limited workspace access | ## Creating and Managing API Keys Now that you understand the permission model, let's look at how to create the API keys you'll need: ### Through the Portkey Dashboard The simplest way to create an API key is through the Portkey dashboard: ### Through the API You can also create keys programmatically: ```sh Creating Admin API Key {1,2} curl -X POST https://api.portkey.ai/v1/api-keys/organisation/service -H "x-portkey-api-key: YOUR_EXISTING_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name":"API_KEY_NAME_0809", "scopes":[ "logs.export", "logs.list", "logs.view" ] }' ``` ```sh Creating Workspace API Key {1,2} curl -X POST https://api.portkey.ai/v1/api-keys/workspace/user \ -H "x-portkey-api-key: YOUR_EXISTING_WORKSPACE_KEY" \ -H "Content-Type: application/json" \ -d '{ "name":"API_KEY_NAME_0909", "workspace_id":"WORKSPACE_ID", "scopes":[ "virtual_keys.create", "virtual_keys.update", ] }' ``` ## Understanding API Key Capabilities Both key types have different capabilities. This table clarifies which operations each key type can perform: | Operation | Admin API Key | Workspace API Key | | :--------------------------- | :----------------- | :------------------- | | Manage organization settings | ✅ | ❌ | | Create/manage workspaces | ✅ | ❌ | | Manage users and permissions | ✅ | ❌ | | Create/manage configs | ✅ (All workspaces) | ✅ (Single workspace) | | Create/manage virtual keys | ✅ (All workspaces) | ✅ (Single workspace) | | Access Analytics | ✅ (All workspaces) | ✅ (Single workspace) | | Create/update feedback | ❌ | ✅ | ## Security and Compliance: Audit Logs For security-conscious organizations, Portkey provides comprehensive audit logging of all Admin API operations. These logs give you complete visibility into administrative actions: Every administrative action is recorded with: * User identity * Action type and target resource * Timestamp * IP address * Request details This audit trail helps maintain compliance and provides accountability for all administrative changes. Learn more about Portkey's audit logging capabilities ## Getting Started with the Admin API Now that you understand the Admin API ecosystem, authentication, and permissions model, you're ready to start making requests. Here's what you'll need: 1. **Appropriate role**: Ensure you have the right permissions (Org Owner/Admin for Admin API, Workspace Manager for Workspace API) 2. **API key**: Generate the appropriate key from the Portkey dashboard 3. **Make your first request**: Use your key in the request header For developers looking to integrate with the Admin API, we provide a complete OpenAPI specification that you can use with your API development tools: Download the OpenAPI spec for the Admin API ## Need Support? If you need help setting up or using the Admin API, our team is ready to assist: Schedule time with our team to get personalized help with the Admin API # OpenAPI Specification Source: https://docs.portkey.ai/docs/api-reference/admin-api/open-api-specification # null Source: https://docs.portkey.ai/docs/api-reference/inference-api/anthropic-transform # Parameter Mappings & Transformations ## Basic Parameter Mappings * `model` → direct mapping (default: 'claude-2.1') * `max_tokens` → direct mapping to `max_tokens` * `temperature` → direct mapping (constrained: 0-1) * `top_p` → direct mapping (default: -1) * `stream` → direct mapping (default: false) * `user` → mapped to `metadata.user_id` * `stop` → mapped to `stop_sequences` * `max_completion_tokens` → mapped to `max_tokens` ## Complex Transformations ### Messages Transformation 1. System Messages: * Extracted from messages array where `role === 'system'` * Transformed into `AnthropicMessageContentItem[]` * Handles both string content and object content with text * Preserves cache control metadata if present 2. Assistant Messages (`transformAssistantMessage`): * Transforms content into Anthropic's content array format * Handles tool calls by converting them into Anthropic's tool\_use format * Text content is wrapped in `{type: 'text', text: content}` * Tool calls are transformed into `{type: 'tool_use', name: function.name, id: toolCall.id, input: parsed_arguments}` 3. Tool Messages (`transformToolMessage`): * Converted to user role with tool\_result type * Preserves tool\_call\_id as tool\_use\_id * Content wrapped in specific format: `{type: 'tool_result', tool_use_id: id, content: string}` 4. User Messages with Images: * Handles base64 encoded images in content * Transforms them into Anthropic's image format with proper media type * Preserves cache control metadata ### Tools Transformation * Converts OpenAI-style function definitions to Anthropic tool format * Maps function parameters to input\_schema * Preserves cache control metadata * Structure transformation: ```typescript OpenAI: {function: {name, description, parameters}} ↓ Anthropic: {name, description, input_schema: {type, properties, required}} ``` ### Tool Choice Transformation * 'required' → `{type: 'any'}` * 'auto' → `{type: 'auto'}` * Function specification → `{type: 'tool', name: function.name}` # Response Transformations ## Regular Response 1. Content Processing: * Extracts text content from first content item if type is 'text' * Processes tool\_use items into OpenAI tool\_calls format * Preserves tool IDs and function names 2. Usage Statistics: * Maps input\_tokens → prompt\_tokens * Maps output\_tokens → completion\_tokens * Calculates total\_tokens * Preserves cache-related tokens if present ## Streaming Response 1. Event Handling: * Filters out 'ping' and 'content\_block\_stop' events * Converts 'message\_stop' to '\[DONE]' * Handles multiple event types: content\_block\_delta, content\_block\_start, message\_delta, message\_start 2. Special States: * Tracks chain of thought messages * Maintains usage statistics across stream * Handles tool streaming differently based on message context # Edge Cases & Special Handling 1. Image Content: * Special handling for base64 encoded images * Parses media type from data URL * Validates image URL format 2. Tool Streaming: * Handles partial JSON in tool arguments * Manages tool indices differently when chain-of-thought messages are present * Separates tool name and arguments into different stream chunks 3. Cache Control: * Preserves ephemeral cache control metadata throughout transformations * Handles cache usage statistics in both regular and streaming responses 4. Error Handling: * Transforms Anthropic-specific error format to universal format * Preserves error types and messages * Handles non-200 response status codes 5. Empty/Null Handling: * Safely handles missing usage statistics * Manages undefined tool calls * Handles empty content arrays # Create Assistant Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/assistants/create-assistant post /assistants # Delete Assistant Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/assistants/delete-assistant delete /assistants/{assistant_id} # List Assistant Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/assistants/list-assistants get /assistants # Modify Assistant Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/assistants/modify-assistant post /assistants/{assistant_id} # Retrieve Assistant Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/assistants/retrieve-assistant get /assistants/{assistant_id} # Create Message Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/messages/create-message post /threads/{thread_id}/messages # Delete Message Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/messages/delete-message delete /threads/{thread_id}/messages/{message_id} # List Message Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/messages/list-messages get /threads/{thread_id}/messages # Modify Message Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/messages/modify-message post /threads/{thread_id}/messages/{message_id} # Retrieve Message Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/messages/retrieve-message get /threads/{thread_id}/messages/{message_id} # List Run Steps Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/run-steps/list-run-steps get /threads/{thread_id}/runs/{run_id}/steps # Retrieve Run Steps Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/run-steps/retrieve-run-steps get /threads/{thread_id}/runs/{run_id}/steps/{step_id} # Cancel Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/cancel-run post /threads/{thread_id}/runs/{run_id}/cancel # Create Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/create-run post /threads/{thread_id}/runs # Create thread and Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/create-thread-and-run post /threads/runs # list Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/list-runs get /threads/{thread_id}/runs # Modify Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/modify-run post /threads/{thread_id}/runs/{run_id} # Retrieve Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/retrieve-run get /threads/{thread_id}/runs/{run_id} # Submit Tool Outputs to Run Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/runs/submit-tool-outputs-to-run post /threads/{thread_id}/runs/{run_id}/submit_tool_outputs # Create Thread Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/threads/create-thread post /threads # Delete Thread Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/threads/delete-thread delete /threads/{thread_id} # Modify Thread Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/threads/modify-thread post /threads/{thread_id} # Retrieve Thread Source: https://docs.portkey.ai/docs/api-reference/inference-api/assistants-api/threads/retrieve-thread get /threads/{thread_id} # Create Speech Source: https://docs.portkey.ai/docs/api-reference/inference-api/audio/create-speech post /audio/speech # Create Transcription Source: https://docs.portkey.ai/docs/api-reference/inference-api/audio/create-transcription post /audio/transcriptions # Create Translation Source: https://docs.portkey.ai/docs/api-reference/inference-api/audio/create-translation post /audio/translations # Authentication Source: https://docs.portkey.ai/docs/api-reference/inference-api/authentication To ensure secure access to Portkey's APIs, authentication is required for all requests. This guide provides the necessary steps to authenticate your requests using the Portkey API key, regardless of whether you are using the SDKs for Python and JavaScript, the OpenAI SDK, or making REST API calls directly. ## Obtaining Your API Key [Create](https://app.portkey.ai/signup) or [log in](https://app.portkey.ai/login) to your Portkey account. Grab your account's API key from the "Settings" page. Based on your access level, you might see the relevant permissions on the API key modal - tick the ones you'd like, name your API key, and save it. ## Authentication with SDKs ### Portkey SDKs ```ts import Portkey from 'portkey-ai' const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", // Replace with your actual API key virtualKey: "VIRTUAL_KEY" // Optional: Use for virtual key management }) const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-4o', }); console.log(chatCompletion.choices); ``` ```python from portkey_ai import Portkey client = Portkey( api_key="PORTKEY_API_KEY", # Replace with your actual API key virtual_key="VIRTUAL_KEY" # Optional: Use if virtual keys are set up ) chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": "Say this is a test"}], model='gpt-4o' ) print(chat_completion.choices[0].message["content"]) ``` ```sh curl https://api.portkey.ai/v1/chat/completions \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: $VIRTUAL_KEY" \ -d '{ "model": "gpt-4o", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Hello!" } ] }' ``` ### OpenAI SDK When integrating Portkey through the OpenAI SDK, modify the base URL and add the `x-portkey-api-key` header for authentication. Here's an example of how to do it: We use the `createHeaders` helper function from the Portkey SDK here to easily create Portkey headers. You can pass the raw headers (`x-portkey-api-key`, `x-portkey-provider`) directly in the `defaultHeaders` param as well. ```js import OpenAI from 'openai'; import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai' const openai = new OpenAI({ apiKey: 'OPENAI_API_KEY', baseURL: PORTKEY_GATEWAY_URL, defaultHeaders: createHeaders({ provider: "openai", apiKey: "PORTKEY_API_KEY" }) }); async function main() { const chatCompletion = await openai.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-4o', }); console.log(chatCompletion.choices); } main(); ``` ```python from openai import OpenAI from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders openai_client = OpenAI( base_url=PORTKEY_GATEWAY_URL, default_headers=createHeaders( api_key="PORTKEY-API-KEY", provider="openai" ) ) response = openai_client.chat.completions.create( messages=[{'role': 'user', 'content': 'Say this is a test'}], model='gpt-4bo' ) ``` Read more [here](/integrations/llms/openai). # Cancel Batch Source: https://docs.portkey.ai/docs/api-reference/inference-api/batch/cancel-batch post /batches/{batch_id}/cancel # Create Batch Source: https://docs.portkey.ai/docs/api-reference/inference-api/batch/create-batch post /batches # List Batch Source: https://docs.portkey.ai/docs/api-reference/inference-api/batch/list-batch get /batches # Retrieve Batch Source: https://docs.portkey.ai/docs/api-reference/inference-api/batch/retrieve-batch get /batches/{batch_id} # Chat Source: https://docs.portkey.ai/docs/api-reference/inference-api/chat post /chat/completions # Completions Source: https://docs.portkey.ai/docs/api-reference/inference-api/completions post /completions # Gateway Config Object Source: https://docs.portkey.ai/docs/api-reference/inference-api/config-object The `config` object is used to configure API interactions with various providers. It supports multiple modes such as single provider access, load balancing between providers, and fallback strategies. **The following JSON schema is used to validate the config object:** ```js { $schema: 'http://json-schema.org/draft-07/schema#', type: 'object', properties: { after_request_hooks: { type: 'array', items: { properties: { id: { type: 'string', }, type: { type: 'string', }, async: { type: 'boolean', }, on_fail: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, }, }, on_success: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, }, }, checks: { type: 'array', items: { type: 'object', properties: { id: { type: 'string', }, parameters: { type: 'object', }, }, required: ['id', 'parameters'], }, }, }, required: ['id'], }, }, input_guardrails: { type: 'array', items: { oneOf: [ { type: 'object', properties: { id: { type: 'string', }, deny: { type: 'boolean', }, on_fail: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, }, }, on_success: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, }, }, async: { type: 'boolean', }, }, additionalProperties: { type: 'object', additionalProperties: true, }, }, { type: 'string', }, ], }, }, output_guardrails: { type: 'array', items: { oneOf: [ { type: 'object', properties: { id: { type: 'string', }, deny: { type: 'boolean', }, on_fail: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, deny: { type: 'boolean', }, }, }, on_success: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, deny: { type: 'boolean', }, }, }, async: { type: 'boolean', }, }, additionalProperties: { type: 'object', additionalProperties: true, }, }, { type: 'string', }, ], }, }, before_request_hooks: { type: 'array', items: { properties: { id: { type: 'string', }, type: { type: 'string', }, on_fail: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, deny: { type: 'boolean', }, }, }, on_success: { type: 'object', properties: { feedback: { type: 'object', properties: { value: { type: 'number', }, weight: { type: 'number', }, metadata: { type: 'object', }, }, }, deny: { type: 'boolean', }, }, }, checks: { type: 'array', items: { type: 'object', properties: { id: { type: 'string', }, parameters: { type: 'object', }, }, required: ['id', 'parameters'], }, }, }, required: ['id'], }, }, strategy: { type: 'object', properties: { mode: { type: 'string', enum: ['single', 'loadbalance', 'fallback', 'conditional'], }, conditions: { type: 'array', items: { type: 'object', properties: { query: { type: 'object', }, then: { type: 'string', }, }, required: ['query', 'then'], }, }, default: { type: 'string', }, on_status_codes: { type: 'array', items: { type: 'integer', }, optional: true, }, }, allOf: [ { if: { properties: { mode: { const: 'conditional', }, }, }, then: { required: ['conditions', 'default'], }, }, ], required: ['mode'], }, name: { type: 'string', }, strict_open_ai_compliance: { type: 'boolean', }, provider: { type: 'string', enum: [ 'openai', 'anthropic', 'azure-openai', 'azure-ai', 'anyscale', 'cohere', 'palm', 'google', 'together-ai', 'mistral-ai', 'perplexity-ai', 'stability-ai', 'nomic', 'ollama', 'bedrock', 'ai21', 'groq', 'segmind', 'vertex-ai', 'deepinfra', 'novita-ai', 'fireworks-ai', 'deepseek', 'voyage', 'jina', 'reka-ai', 'moonshot', 'openrouter', 'lingyi', 'zhipu', 'monsterapi', 'predibase', 'huggingface', 'github', 'deepbricks', 'siliconflow', ], }, resource_name: { type: 'string', optional: true, }, deployment_id: { type: 'string', optional: true, }, api_version: { type: 'string', optional: true, }, deployments: { type: 'array', optional: true, items: { type: 'object', properties: { deployment_id: { type: 'string', }, alias: { type: 'string', }, api_version: { type: 'string', }, is_default: { type: 'boolean', }, }, required: ['deployment_id', 'alias', 'api_version'], }, }, override_params: { type: 'object', }, api_key: { type: 'string', }, virtual_key: { type: 'string', }, prompt_id: { type: 'string', }, request_timeout: { type: 'integer', }, cache: { type: 'object', properties: { mode: { type: 'string', enum: ['simple', 'semantic'], }, max_age: { type: 'integer', optional: true, }, }, required: ['mode'], }, retry: { type: 'object', properties: { attempts: { type: 'integer', }, on_status_codes: { type: 'array', items: { type: 'number', }, optional: true, }, }, required: ['attempts'], }, weight: { type: 'number', }, on_status_codes: { type: 'array', items: { type: 'integer', }, }, custom_host: { type: 'string', }, forward_headers: { type: 'array', items: { type: 'string', }, }, targets: { type: 'array', items: { $ref: '#', }, }, aws_access_key_id: { type: 'string', }, aws_secret_access_key: { type: 'string', }, aws_region: { type: 'string', }, aws_session_token: { type: 'string', }, openai_organization: { type: 'string', }, openai_project: { type: 'string', }, vertex_project_id: { type: 'string', }, vertex_region: { type: 'string', }, vertex_service_account_json: { type: 'object', }, azure_region: { type: 'string', }, azure_deployment_name: { type: 'string', }, azure_deployment_type: { type: 'string', enum: ['serverless', 'managed'], }, azure_endpoint_name: { type: 'string', }, azure_api_version: { type: 'string', }, }, anyOf: [ { required: ['provider', 'api_key'], }, { required: ['provider', 'custom_host'], }, { required: ['virtual_key'], }, { required: ['strategy', 'targets'], }, { required: ['cache'], }, { required: ['retry'], }, { required: ['prompt_id'], }, { required: ['forward_headers'], }, { required: ['request_timeout'], }, { required: ['provider', 'aws_access_key_id', 'aws_secret_access_key'], }, { required: ['provider', 'vertex_region', 'vertex_service_account_json'], }, { required: ['provider', 'vertex_region', 'vertex_project_id'], }, { required: [ 'provider', 'azure_deployment_name', 'azure_deployment_type', 'azure_region', 'azure_api_version', ], }, { required: ['provider', 'azure_endpoint_name', 'azure_deployment_type'], }, { required: ['after_request_hooks'], }, { required: ['before_request_hooks'], }, { required: ['input_guardrails'], }, { required: ['output_guardrails'], }, ], additionalProperties: false, } ``` ## Example Configs ```js // Simple config with cache and retry { "virtual_key": "***", // Your Virtual Key "cache": { // Optional "mode": "semantic", "max_age": 10000 }, "retry": { // Optional "attempts": 5, "on_status_codes": [] } } // Load balancing with 2 OpenAI keys { "strategy": { "mode": "loadbalance" }, "targets": [ { "provider": "openai", "api_key": "sk-***" }, { "provider": "openai", "api_key": "sk-***" } ] } ``` You can find more examples of schemas [below](/api-reference/inference-api/config-object#examples). ## Schema Details | Key Name | Description | Type | Required | Enum Values | Additional Info | | ----------------- | ------------------------------------------------------------ | ---------------- | --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------- | | `strategy` | Operational strategy for the config or any individual target | object | Yes (if no `provider` or `virtual_key`) | - | See Strategy Object Details | | `provider` | Name of the service provider | string | Yes (if no `mode` or `virtual_key`) | "openai", "anthropic", "azure-openai", "anyscale", "cohere" | - | | `api_key` | API key for the service provider | string | Yes (if `provider` is specified) | - | - | | `virtual_key` | Virtual key identifier | string | Yes (if no `mode` or `provider`) | - | - | | `cache` | Caching configuration | object | No | - | See Cache Object Details | | `retry` | Retry configuration | object | No | - | See Retry Object Details | | `weight` | Weight for load balancing | number | No | - | Used in `loadbalance` mode | | `on_status_codes` | Status codes triggering fallback | array of strings | No | - | Used in `fallback` mode | | `targets` | List of target configurations | array | Yes (if `mode` is specified) | - | Each item follows the config schema | | `request_timeout` | Request timeout configuration | number | No | - | - | | `custom_host` | Route to privately hosted model | string | No | - | Used in combination with `provider` + `api_key` | | `forward_headers` | Forward sensitive headers directly | array of strings | No | - | - | | `override_params` | Pass model name and other hyper parameters | object | No | "model", "temperature", "frequency\_penalty", "logit\_bias", "logprobs", "top\_logprobs", "max\_tokens", "n", "presence\_penalty", "response\_format", "seed", "stop", "top\_p", etc. | Pass everything that's typically part of the payload | ### Strategy Object Details | Key Name | Description | Type | Required | Enum Values | Additional Info | | ----------------- | -------------------------------------------------------------------------------------------- | ---------------- | -------- | ------------------------- | --------------- | | `mode` | strategy mode for the config | string | Yes | "loadbalance", "fallback" | | | `on_status_codes` | status codes to apply the strategy. This field is only used when strategy mode is "fallback" | array of numbers | No | | Optional | ### Cache Object Details | Key Name | Description | Type | Required | Enum Values | Additional Info | | --------- | ----------------------------- | ------- | -------- | -------------------- | --------------- | | `mode` | Cache mode | string | Yes | "simple", "semantic" | - | | `max_age` | Maximum age for cache entries | integer | No | - | Optional | ### Retry Object Details | Key Name | Description | Type | Required | Enum Values | Additional Info | | ----------------- | ------------------------------- | ---------------- | -------- | ----------- | --------------- | | `attempts` | Number of retry attempts | integer | Yes | - | - | | `on_status_codes` | Status codes to trigger retries | array of strings | No | - | Optional | ### Cloud Provider Params (Azure OpenAI, Google Vertex, AWS Bedrock) #### Azure OpenAI | Key Name | Type | Required | | --------------------- | ---------------------------- | -------- | | `azure_resource_name` | string | No | | `azure_deployment_id` | string | No | | `azure_api_version` | string | No | | `azure_model_name` | string | No | | `Authorization` | string ("Bearer \$API\_KEY") | No | #### Google Vertex AI | Key Name | Type | Required | | ------------------- | ------ | -------- | | `vertex_project_id` | string | No | | `vertex_region` | string | No | #### AWS Bedrock | Key Name | Type | Required | | ----------------------- | ------ | -------- | | `aws_access_key_id` | string | No | | `aws_secret_access_key` | string | No | | `aws_region` | string | No | | `aws_session_token` | string | No | ### Notes * The strategy `mode` key determines the operational mode of the config. If strategy `mode` is not specified, a single provider mode is assumed, requiring either `provider` and `api_key` or `virtual_key`. * In `loadbalance` and `fallback` modes, the `targets` array specifies the configurations for each target. * The `cache` and `retry` objects provide additional configurations for caching and retry policies, respectively. ## Examples ```json { "provider": "openai", "api_key": "sk-***" } ``` ```json { "provider": "anthropic", "api_key": "xxx", "override_params": { "model": "claude-3-sonnet-20240229", "max_tokens": 512, "temperature": 0 } } ``` ```json { "virtual_key": "***" } ``` ```json { "virtual_key": "***", "cache": { "mode": "semantic", "max_age": 10000 }, "retry": { "attempts": 5, "on_status_codes": [429] } } ``` ```json { "strategy": { "mode": "loadbalance" }, "targets": [ { "provider": "openai", "api_key": "sk-***" }, { "provider": "openai", "api_key": "sk-***" } ] } ``` ```json { "strategy": { "mode": "loadbalance" }, "targets": [ { "provider": "openai", "api_key": "sk-***" }, { "strategy": { "mode": "fallback", "on_status_codes": [429, 241] }, "targets": [ { "virtual_key": "***" }, { "virtual_key": "***" } ] } ] } ``` # Embeddings Source: https://docs.portkey.ai/docs/api-reference/inference-api/embeddings post /embeddings # Errors Source: https://docs.portkey.ai/docs/api-reference/inference-api/error-codes Portkey uses conventional response codes to indicate the success or failure of an API request. In general: Codes in the `2xx` range indicate success. Codes in the `4xx` range indicate an error that failed given the information provided. Codes in the `5xx` range indicate an error with Portkey’s servers (these are rare). ## Common Errors During request processing, you may encounter error codes from either Portkey or the LLM provider: | Status Code | Description | Source | | ----------- | -------------------------------------------- | ------------------- | | `408` | Request timed out | Portkey OR Provider | | `412` | Budget exhausted | Portkey OR Provider | | `429` | Request rate limited | Portkey OR Provider | | `446` | Guardrail checks failed (request denied) | Portkey | | `246` | Guardrail checks failed (request successful) | Portkey | Provider-specific error codes are passed through by Portkey. For debugging these errors, refer to our [Error Library](https://portkey.ai/error-library). # Delete File Source: https://docs.portkey.ai/docs/api-reference/inference-api/files/delete-file delete /files/{file_id} # List Files Source: https://docs.portkey.ai/docs/api-reference/inference-api/files/list-files get /files # Retrieve File Source: https://docs.portkey.ai/docs/api-reference/inference-api/files/retrieve-file get /files/{file_id} # Retrieve File Content Source: https://docs.portkey.ai/docs/api-reference/inference-api/files/retrieve-file-content get /files/{file_id}/content # Upload File Source: https://docs.portkey.ai/docs/api-reference/inference-api/files/upload-file post /files # Cancel Fine-tuning Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/cancel-fine-tuning post /fine_tuning/jobs/{fine_tuning_job_id}/cancel # Create Fine-tuning Job Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/create-fine-tuning-job post /fine_tuning/jobs Finetune a provider model # List Fine-tuning Checkpoints Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/list-fine-tuning-checkpoints get /fine_tuning/jobs/{fine_tuning_job_id}/checkpoints # List Fine-tuning Events Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/list-fine-tuning-events get /fine_tuning/jobs/{fine_tuning_job_id}/events # List Fine-tuning Jobs Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/list-fine-tuning-jobs get /fine_tuning/jobs # Retrieve Fine-tuning Job Source: https://docs.portkey.ai/docs/api-reference/inference-api/fine-tuning/retrieve-fine-tuning-job get /fine_tuning/jobs/{fine_tuning_job_id} # Gateway to Other APIs Source: https://docs.portkey.ai/docs/api-reference/inference-api/gateway-for-other-apis Access any custom provider endpoint through Portkey API This feature is available on all Portkey plans. Portkey API has first-class support for monitoring and routing your requests to 10+ provider endpoints, like `/chat/completions`, `/audio`, `/embeddings`, etc. We also make these endpoints work across 250+ different LLMs. **However**, there are still many endpoints like Cohere's `/rerank` or Deepgram's `/listen` that are uncommon or have niche use cases. With the **Gateway to Other APIs** feature, you can route to any custom provider endpoint using Portkey (including the ones hosted on your private setups) and get **complete logging & monitoring** for all your requests. # How to Integrate 1. Get your Portkey API key 2. Add your provider details to Portkey 3. Make your request using Portkey's API or SDK ## 1. Get Portkey API Key Create or log in to your Portkey account. Grab your account’s API key from the [“API Keys” page](https://app.portkey.ai/api-keys). ## 2. Add Provider Details Choose one of these authentication methods: Portkey integrates with 40+ LLM providers. Add your provider credentials (such as API key) to Portkey, and get a virtual key that you can use to authenticate and send your requests. ```sh cURL curl https://api.portkey.ai/v1/rerank \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: $PORTKEY_PROVIDER_VIRTUAL_KEY" \ ``` ```py Python from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", virtual_key = "PROVIDER_VIRTUAL_KEY" ) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', virtualKey: 'PROVIDER_VIRTUAL_KEY' }); ``` Creating virtual keys lets you: * Manage all credentials in one place * Rotate between different provider keys * Set custom budget limits & rate limits per key Set the provider name from one of Portkey's 40+ supported providers list and use your provider credentials directly with each request. ```sh cURL curl https://api.portkey.ai/v1/rerank \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-provider: cohere" \ -H "Authorization: Bearer $COHERE_API_KEY" \ ``` ```py Python from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", provider = "cohere", Authorization = "Bearer COHERE_API_KEY" ) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', provider: "cohere", Authorization: "Bearer COHERE_API_KEY" }); ``` Route to your privately hosted model endpoints. * Choose a compatible provider type (e.g., `openai`, `cohere`) * Provide your endpoint URL with `customHost` * Include `Authentication` if needed ```sh cURL curl https://api.portkey.ai/v1/rerank \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-provider: cohere" \ -H "x-portkey-custom-host: https://182.145.24.5:8080/v1" \ -H "Authorization: Bearer $COHERE_API_KEY" \ ``` ```py Python from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", provider = "cohere", custom_host = "https://182.145.24.5:8080/v1", Authorization = "Bearer COHERE_API_KEY" ) ``` ```ts JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', provider: "cohere", customHost: "https://182.145.24.5:8080/v1", Authorization: "Bearer COHERE_API_KEY" }); ``` ## 3. Make Requests Construct your request URL: 1. Portkey Gateway base URL remains same: `https://api.portkey.ai/v1` 2. Append your custom endpoint at the end of the URL: `https://api.portkey.ai/v1/{provider-endpoint}` ```bash curl --request POST \ --url https://api.portkey.ai/v1/rerank \ --header 'Content-Type: application/json' \ --header 'x-portkey-api-key: $PORTKEY_API_KEY' \ --header 'x-portkey-virtual-key: $COHERE_VIRTUAL_KEY' \ --data '{ "model": "rerank-english-v2.0", "query": "What is machine learning?", "documents": [ "Machine learning is a branch of AI focused on building systems that learn from data.", "Data science involves analyzing and interpreting complex data sets." ] }' ``` The SDK supports the `POST` method currently. 1. Instantiate your Portkey client 2. Use the `.post(url, requestParams)` method to make requests: ```python from portkey_ai import Portkey portkey = Portkey( api_key="PORTKEY_API_KEY", virtual_key="PROVIDER_VIRTUAL_KEY" ) response = portkey.post( '/rerank', model="rerank-english-v2.0", query="What is machine learning?", documents=[ "Machine learning is a branch of AI focused on building systems that learn from data.", "Data science involves analyzing and interpreting complex data sets." ] ) ``` The SDK supports the `POST` method currently. 1. Instantiate your Portkey client 2. Use the `.post(url, requestParams)` method to make requests: ```javascript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", virtualKey: "PROVIDER_VIRTUAL_KEY" }); const response = await portkey.post('/rerank', { model: "rerank-english-v2.0", query: "What is machine learning?", documents: [ "Machine learning is a branch of AI focused on building systems that learn from data.", "Data science involves analyzing and interpreting complex data sets." ] }); ``` ## End-to-end Example A complete example showing document reranking with Cohere: ```python from portkey_ai import Portkey portkey = Portkey( api_key="PORTKEY_API_KEY", virtual_key="COHERE_VIRTUAL_KEY" ) response = portkey.post( '/rerank', return_documents=False, max_chunks_per_doc=10, model="rerank-english-v2.0", query="What is the capital of the United States?", documents=[ "Carson City is the capital city of the American state of Nevada.", "Washington, D.C. is the capital of the United States.", "Capital punishment has existed in the United States since before its founding." ] ) ``` # Caveats & Considerations * Response objects are returned exactly as received from the provider, without Portkey transformations * REST API supports all HTTP methods * SDK currently supports `POST` only (more methods coming soon) * There are no limitations on which provider endpoints can be proxied * All requests are logged and monitored through your Portkey dashboard # Support Need help? Join our [Developer Forum](https://portkey.wiki/community) for support and discussions. # Headers Source: https://docs.portkey.ai/docs/api-reference/inference-api/headers Header requirements and options for the Portkey API Portkey API accepts 4 kinds of headers for your requests: | | | | | :-------------------------------------------------------- | :--------- | :------------------------------------------------------------- | | Portkey Authentication Header | `Required` | For Portkey auth | | Provider Authentication Headers OR Cloud-Specific Headers | `Required` | For provider auth | | Additional Portkey Headers | `Optional` | To pass `config`, `metadata`, `trace id`, `cache refresh` etc. | | Custom Headers | `Optional` | To forward any other headers directly | ## Portkey Authentication ### Portkey API Key Authenticate your requests with your Portkey API key. Obtain API key from the [Portkey dashboard](https://app.portkey.ai/api-keys).
Environment variable: `PORTKEY_API_KEY` ```sh cURL {2} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ ``` ```py Python {4} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY" # defaults to os.environ.get("PORTKEY_API_KEY") ) ``` ```js JavaScript {4} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' // defaults to process.env["PORTKEY_API_KEY"] }); ```
## Provider Authentication In addition to the Portkey API key, you must provide information about the AI provider you're using. There are **4** ways to do this: ### 1. Provider Slug + Auth Useful if you do not want to save your API keys to Portkey vault and make direct requests. Specifies the provider you're using (e.g., `openai`, `anthropic`, `vertex-ai`).
List of [Portkey supported providers here](/integrations/llms).
Pass the auth details for the specified provider as a `"Bearer $TOKEN"`.

If your provider expects their auth with headers such as `x-api-key` or `api-key`, you can pass the token with the `Authorization` header directly and Portkey will convert it into the provider-specific format.
```sh cURL {3,4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-provider: openai" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ ``` ```py Python {5,6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") provider = "openai", Authorization = "Bearer OPENAI_API_KEY" ) ``` ```js JavaScript {5,6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] provider: 'openai', Authorization: 'Bearer OPENAI_API_KEY' }); ``` ### 2. Virtual Key Save your provider auth on Portkey and use a virtual key to directly make a call. [Docs](/product/ai-gateway/virtual-keys)) ```sh cURL {3} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ ``` ```py Python {5} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key" ) ``` ```js JavaScript {5} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: 'openai-virtual-key' }); ``` ### 3. Config Pass your Portkey config with this header. Accepts a `JSON object` or a `config ID` that can also contain gateway configuration settings, and provider details.
* Configs can be saved in the Portkey UI and referenced by their ID ([Docs](/product/ai-gateway/configs)) * Configs also enable other optional features like Caching, Load Balancing, Fallback, Retries, and Timeouts.
```sh cURL {3} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-config: openai-config" \ ``` ```py Python {5} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") config = "openai-config" # You can also send raw JSON # config = {"provider": "openai", "api_key": "OPENAI_API_KEY"} ) ``` ```js JavaScript {5} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] config: 'openai-config' // You can also send raw JSON // config: {"provider": "openai", "api_key": "OPENAI_API_KEY"} }); ``` ### 4. Custom Host Specifies the base URL where you want to send your request Target provider that's availabe on your base URL. If you are unsure of which target provider to set, you can set `openai`. Pass the auth details for the specified provider as a `"Bearer $TOKEN"`.

If your provider expects their auth with headers such as `x-api-key` or `api-key`, you can pass the token with the `Authorization` header directly and Portkey will convert it into the provider-specific format.
```sh cURL {3-5} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-custom-host: http://124.124.124.124/v1" \ -H "x-portkey-provider: openai" \ -H "Authorization: Bearer $TOKEN" \ ``` ```py Python {5-7} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") custom_host = "http://124.124.124.124/v1", provider = "openai", Authorization = "Bearer TOKEN" ) ``` ```js JavaScript {5-7} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] customHost: "http://124.124.124.124/v1", provider: "openai", Authorization: "Bearer TOKEN" }); ``` *** ## Additional Portkey Headers There are additional optional Portkey headers that enable various features and enhancements: ### Trace ID An ID you can pass to refer to one or more requests later on. If not provided, Portkey generates a trace ID automatically for each request. ([Docs](/product/observability/traces)) ```sh cURL {4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "x-portkey-trace-id: test-request" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", trace_id = "test-request" ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", traceId: "test-request" }); ``` ### Metadata Allows you to attach custom metadata to your requests, which can be filtered later in the analytics and log dashboards.
You can include the special metadata type `_user` to associate requests with specific users. ([Docs](/product/observability/metadata))
```sh cURL {4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "x-portkey-metadata: {'_user': 'user_id_123', 'foo': 'bar'}" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", metadata = {"_user": "user_id_123", "foo": "bar"}" ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", metadata: {"_user": "user_id_123", "foo": "bar"}" }); ``` ### Cache Force Refresh Forces a cache refresh for your request by making a new API call and storing the updated value.
Expects `true` or `false` See the caching documentation for more information. ([Docs](/product/ai-gateway/cache-simple-and-semantic))
```sh cURL {4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "x-portkey-cache-force-refresh: true" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", cache_force_refresh = True ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", cacheForceRefresh: True }); ``` ### Cache Namespace Partition your cache store based on custom strings, ignoring metadata and other headers. ```sh cURL {4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "x-portkey-cache-namespace: any-string" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", cache_namespace = "any-string" ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", cacheNamespace: "any-string" }); ``` ### Request Timeout Set timeout after which a request automatically terminates. The time is set in milliseconds. ```sh cURL {4} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "x-portkey-request-timeout: 3000" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", request_timeout = 3000 ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", reqiestTimeout: 3000 }); ``` ## Custom Headers You can pass any other headers your API expects by directly forwarding them without any processing by Portkey.
This is especially useful if you want to pass send sensitive headers. ### Forward Headers Pass all the headers you want to forward directly in this array. ([Docs](https://portkey.ai/docs/welcome/integration-guides/byollm#forward-sensitive-headers-securely)) ```sh cURL {4-6} curl https://api.portkey.ai/v1/chat/completions \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: openai-virtual-key" \ -H "X-Custom-Header: ...."\ -H "Another-Header: ....."\ -H "x-portkey-forward-headers: ['X-Custom-Header', 'Another-Header']" \ ``` ```py Python {6} from portkey_ai import Portkey portkey = Portkey( api_key = "PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") virtual_key = "openai-virtual-key", X_Custom_Header = "....", Another_Header = "....", forward_headers = ['X_Custom_Header', 'Another_Header'] ) ``` ```js JavaScript {6} import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY', // defaults to process.env["PORTKEY_API_KEY"] virtualKey: "openai-virtual-key", CustomHeader: "....", AnotherHeader: "....", forwardHeaders: ['CustomHeader', 'AnotherHeader'] }); ``` #### Python Usage With the Python SDK, you need to transform your headers to **Snake Case** and then include them while initializing the Portkey client. Example: If you have a header of the format `X-My-Custom-Header`, it should be sent as `X_My_Custom_Header` in the SDK #### JavaScript Usage With the JS SDK, you need to transform your headers to **Camel Case** and then include them while initializing the Portkey client. Example: If you have a header of the format `X-My-Custom-Header`, it should be sent as `xMyCustomHeader` in the SDK ## Cloud-Specific Headers (`Azure`, `Google`, `AWS`) Pass more configuration headers for `Azure OpenAI`, `Google Vertex AI`, or `AWS Bedrock` ### Azure * `x-portkey-azure-resource-name`, `x-portkey-azure-deployment-id`, `x-portkey-azure-api-version`, `Authorization`, `x-portkey-azure-model-name` ### Google Vertex AI * `x-portkey-vertex-project-id`, `x-portkey-vertex-region`, `X-Vertex-AI-LLM-Request-Type` ### AWS Bedrock * `x-portkey-aws-session-token`, `x-portkey-aws-secret-access-key`, `x-portkey-aws-region`, `x-portkey-aws-session-token` *** ## List of All Headers For a comprehensive list of all available parameters and their detailed descriptions, please refer to the Portkey SDK Client documentation. ## Using Headers in SDKs You can send these headers through REST API calls as well as by using the OpenAI or Portkey SDKs. With the Portkey SDK, Other than `cacheForceRefresh`, `traceID`, and `metadata`, rest of the headers are passed while instantiating the Portkey client. ```ts import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", // Authorization: "Bearer PROVIDER_API_KEY", // provider: "anthropic", // customHost: "CUSTOM_URL", // forwardHeaders: ["Authorization"], virtualKey: "VIRTUAL_KEY", config: "CONFIG_ID", }) const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-4o', },{ traceId: "your_trace_id", metadata: {"_user": "432erf6"} }); console.log(chatCompletion.choices); ``` ```python from portkey_ai import Portkey portkey = Portkey( api_key="PORTKEY_API_KEY", ## Authorization="Bearer PROVIDER_API_KEY", ## provider="openai", ## custom_host="CUSTOM_URL", ## forward_headers=["Authorization"], virtual_key="VIRTUAL_KEY", config="CONFIG_ID" ) completion = portkey.with_options( trace_id = "TRACE_ID", metadata = {"_user": "user_12345"} )chat.completions.create( messages = [{ "role": 'user', "content": 'Say this is a test' }], model = 'gpt-4o' ) ``` # Create Image Source: https://docs.portkey.ai/docs/api-reference/inference-api/images/create-image post /images/generations # Create Image Edit Source: https://docs.portkey.ai/docs/api-reference/inference-api/images/create-image-edit post /images/edits # Create Image Variation Source: https://docs.portkey.ai/docs/api-reference/inference-api/images/create-image-variation post /images/variations # Introduction Source: https://docs.portkey.ai/docs/api-reference/inference-api/introduction This documentation provides detailed information about the various ways you can access and interact with Portkey - **a robust AI gateway** designed to simplify and enhance your experience with Large Language Models (LLMs) like OpenAI's GPT models. Whether you're integrating directly with OpenAI, using a framework like Langchain or LlamaIndex, or building standalone applications, Portkey offers a flexible, secure, and efficient way to manage and deploy AI-powered features. ## 3 Ways to Integrate Portkey Portkey can be accessed through three primary methods, each catering to different use cases and integration requirements: ### 1. Portkey SDKs (Python and JavaScript) **Ideal for:** standalone applications or when you're not already using the OpenAI integration. The SDKs are also highly recommended for seamless integration with frameworks like Langchain and LlamaIndex. The Portkey SDKs are available in Python and JavaScript, designed to provide a streamlined, code-first approach to integrating LLMs into your applications. #### Installing the SDK Choose the SDK that matches your development environment: ```sh npm install portkey-ai ``` ```sh pip install portkey_ai ``` #### Usage Once installed, you can use the SDK to make calls to LLMs, manage prompts, handle keys, and more, all through a simple and intuitive API. ### 2. OpenAI SDK through the Portkey Gateway **Ideal for:** if you're currently utilizing OpenAI's Python or Node.js SDKs. By changing the base URL and adding Portkey-specific headers, you can quickly integrate Portkey's features into your existing setup. Learn more [here](/integrations/llms/openai). ### 3. REST API **Ideal for:** applications that prefer RESTful services. The base URL for all REST API requests is `https://api.portkey.ai/v1`, with an [authentication](/api-reference/inference-api/authentication) header. Learn more [here](/api-reference/inference-api/chat). # Moderations Source: https://docs.portkey.ai/docs/api-reference/inference-api/moderations post /moderations # OpenAPI Specification Source: https://docs.portkey.ai/docs/api-reference/inference-api/open-api-specification # Python & Node Source: https://docs.portkey.ai/docs/api-reference/inference-api/portkey-sdk-client The Portkey SDK client enables various features of Portkey in an easy to use `config-as-code` paradigm. ## Install the Portkey SDK Add the Portkey SDK to your application to interact with Portkey's gateway. ```sh npm install --save portkey-ai ``` ```sh pip install portkey-ai ``` ## Export Portkey API Key ```sh export PORTKEY_API_KEY="" ``` ## Basic Client Setup The basic Portkey SDK client needs ***2 required parameters*** 1. The Portkey Account's API key to authenticate all your requests 2. The [virtual key](/product/ai-gateway/virtual-keys#using-virtual-keys) of the AI provider you want to use OR The [config](/api-reference/inference-api/config-object) being used This is achieved through headers when you're using the REST API. For example, ```ts import Portkey from 'portkey-ai'; // Construct a client with a virtual key const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", virtualKey: "VIRTUAL_KEY" }) // Construct a client with a config id const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", config: "cf-***" // Supports a string config slug or a config object }) ``` ```python from portkey_ai import Portkey # Construct a client with a virtual key portkey = Portkey( api_key="PORTKEY_API_KEY", virtual_key="VIRTUAL_KEY" ) # Construct a client with provider and provider API key portkey = Portkey( api_key="PORTKEY_API_KEY", config="cf-***" # Supports a string config slug or a config object ) ``` ```sh curl https://api.portkey.ai/v1/chat/completions \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: $VIRTUAL_KEY" \ -d '{ "model": "gpt-4o", "messages": [{"role": "user","content": "Hello!"}] }' curl https://api.portkey.ai/v1/chat/completions \ -H 'Content-Type: application/json' \ -H 'x-portkey-api-key: $PORTKEY_API_KEY' \ -H 'x-portkey-config: cf-***' \ -d '{ "model": "gpt-4o", "messages": [{"role": "user","content": "Hello!"}] }' ``` Find more info on what's available through [configs here](/api-reference/inference-api/config-object). ## Making a Request You can then use the client to make completion and other calls like this ```ts const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-4o', }); console.log(chatCompletion.choices); ``` ```python completion = portkey.chat.completions.create( messages = [{ "role": 'user', "content": 'Say this is a test' }], model = 'gpt-4o' ) ``` ## Passing Trace ID or Metadata You can choose to override the configuration in individual requests as well and send trace id or metadata along with each request. ```ts const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-4o', }, { traceId: "39e2a60c-b47c-45d8", metadata: {"_user": "432erf6"} }); console.log(chatCompletion.choices); ``` ```python completion = portkey.with_options( trace_id = "TRACE_ID", metadata = {"_user": "USER_IDENTIFIER"} ).chat.completions.create( messages = [{ "role": 'user', "content": 'Say this is a test' }], model = 'gpt-4o' ) ``` ## Async Usage Portkey's Python SDK supports **Async** usage - just use `AsyncPortkey` instead of `Portkey` with `await`: ```py Python import asyncio from portkey_ai import AsyncPortkey portkey = AsyncPortkey( api_key="PORTKEY_API_KEY", virtual_key="VIRTUAL_KEY" ) async def main(): chat_completion = await portkey.chat.completions.create( messages=[{'role': 'user', 'content': 'Say this is a test'}], model='gpt-4' ) print(chat_completion) asyncio.run(main()) ``` *** ## Parameters Following are the parameter keys that you can add while creating the Portkey client. Keeping in tune with the most popular language conventions, we use: * **camelCase** for **Javascript** keys * **snake\_case** for **Python** keys * **hyphenated-keys** for the **headers** | Parameter | Type | Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | -------------------------------------------------------------------- | | **API Key** Your Portkey account's API Key. | stringrequired | `apiKey` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `virtualKey` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | stringobject | `config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | `baseURL` | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `traceID` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | object | `metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `cacheForceRefresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers. | string | `cacheNamespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `customHost` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `forwardHeaders` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `azureResourceName azureDeploymentId azureApiVersion azureModelName` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `vertexProjectId vertexRegion` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `awsAccessKeyId awsSecretAccessKey awsRegion awsSessionToken` | | Parameter | Type | Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | ---------------------------------------------------------------------------- | | **API Key** Your Portkey account's API Key. | stringrequired | `api_key` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `virtual_key` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | stringobject | `config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | `base_url` | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `trace_id` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | object | `metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `cache_force_refresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers. | string | `cache_namespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `custom_host` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `forward_headers` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `azure_resource_name azure_deployment_id azure_api_version azure_model_name` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `vertex_project_id vertex_region` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `aws_access_key_id aws_secret_access_key aws_region aws_session_token` | | Parameter | Type | Header Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | ---------------------------------------------------------------------------------------------------------------------------- | | **API Key** Your Portkey account's API Key. | stringrequired | `x-portkey-api-key` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `x-portkey-virtual-key` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | string | `x-portkey-config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `x-portkey-provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | Change the request URL | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `x-portkey-trace-id` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | string | `x-portkey-metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `x-portkey-cache-force-refresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers | string | `x-portkey-cache-namespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `x-portkey-custom-host` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `x-portkey-forward-headers` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `x-portkey-azure-resource-name x-portkey-azure-deployment-id x-portkey-azure-api-version api-key x-portkey-azure-model-name` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `x-portkey-vertex-project-id x-portkey-vertex-region` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `x-portkey-aws-session-token x-portkey-aws-secret-access-key x-portkey-aws-region x-portkey-aws-session-token` | # Prompt Completions Source: https://docs.portkey.ai/docs/api-reference/inference-api/prompts/prompt-completion post /prompts/{promptId}/completions Execute your saved prompt templates on Portkey Portkey Prompts API completely follows OpenAI's format for both *requests* and *responses*, making it a drop-in replacement existing for your existing **[Chat](/api-reference/inference-api/chat)** or **[Completions](/api-reference/inference-api/completions)** calls. # Features Create your Propmt Template on [Portkey UI](/product/prompt-library/prompt-templates), define variables, and pass them with this API: ```sh cURL curl -X POST "https://api.portkey.ai/v1/prompts/YOUR_PROMPT_ID/completions" \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -d '{ "variables": { "joke_topic": "elections", "humor_level": "10" } }' ``` ```py Python from portkey_ai import Portkey client = Portkey( api_key="PORTKEY_API_KEY" ) completion = client.prompts.completions.create( prompt_id="YOUR_PROMPT_ID", variables={ "joke_topic": "elections", "humor_level": "10" } ) ``` ```js JavaScript import Portkey from 'portkey-ai'; const portkey = new Portkey({ apiKey: 'PORTKEY_API_KEY' }); const completion = await portkey.prompts.completions.create({ promptId: "YOUR_PROMPT_ID", variables: { "joke_topic": "elections", "humor_level": "10" } }); ``` When passing JSON data with variables, `stringify` the value before sending. ```sh cURL curl -X POST "https://api.portkey.ai/v1/prompts/YOUR_PROMPT_ID/completions" \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -d '{ "variables": { "user_data": "{\"name\":\"John\",\"preferences\":{\"topic\":\"AI\",\"format\":\"brief\"}}" } }' ``` ```python Python import json user_data = json.dumps({ "name": "John", "preferences": { "topic": "AI", "format": "brief" } }) completion = client.prompts.completions.create( prompt_id="YOUR_PROMPT_ID", variables={ "user_data": user_data } ) ``` ```javascript JavaScript const userData = JSON.stringify({ name: "John", preferences: { topic: "AI", format: "brief" } }); const completion = await portkey.prompts.completions.create({ promptId: "YOUR_PROMPT_ID", variables: { user_data: userData } }); ``` You can override any model hyperparameter saved in the prompt template by sending its new value at the time of making a request: ```sh cURL curl -X POST "https://api.portkey.ai/v1/prompts/YOUR_PROMPT_ID/completions" \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -d '{ "variables": { "user_input": "Hello world" }, "temperature": 0.7, "max_tokens": 250, "presence_penalty": 0.2 }' ``` ```python Python completion = client.prompts.completions.create( prompt_id="YOUR_PROMPT_ID", variables={ "user_input": "Hello world" }, temperature=0.7, max_tokens=250, presence_penalty=0.2 ) ``` ```javascript JavaScript const completion = await portkey.prompts.completions.create({ promptId: "YOUR_PROMPT_ID", variables: { user_input: "Hello world" }, temperature: 0.7, max_tokens: 250, presence_penalty: 0.2 }); ``` Passing the `{promptId}` always calls the `Published` version of your prompt. But, you can also call a specific template version by appending its version number, like `{promptId@12}`: **Version Tags**: * `@latest`: Calls the most recent version * `@{NUMBER}` (like `@12`): Calls the specified version number * `No Suffix`: Here, Portkey defaults to the `Published` version ```curl cURL {1} curl -X POST "https://api.portkey.ai/v1/prompts/PROMPT_ID@12/completions" \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -d '{ "variables": { "user_input": "Hello world" } }' ``` ```python Python {2} completion = client.prompts.completions.create( prompt_id="PROMPT_ID@12", # PROMPT_ID@latest will call the latest version variables={ "user_input": "Hello world" } ) ``` ```javascript JavaScript {2} const completion = await portkey.prompts.completions.create({ promptId: "PROMPT_ID@12", // PROMPT_ID@latest will call the latest version variables: { user_input: "Hello world" } }); ``` Prompts API also supports streaming responses, and completely follows the OpenAI schema. * Set `stream:True` explicitly in your request to enable streaming ```sh cURL {8} curl -X POST "https://api.portkey.ai/v1/prompts/YOUR_PROMPT_ID/completions" \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -d '{ "variables": { "user_input": "Hello world" }, "stream": true "max_tokens": 250, "presence_penalty": 0.2 }' ``` ```python Python {4} completion = client.prompts.completions.create( prompt_id="YOUR_PROMPT_ID", variables={"user_input": "Hello"}, stream=True ) for chunk in completion: print(chunk.choices[0].delta) ``` ```javascript JavaScript {6} const completion = await portkey.prompts.completions.create({ promptId: "YOUR_PROMPT_ID", variables: { user_input: "Hello" }, stream: true }); for await (const chunk of completion) { console.log(chunk.choices[0].delta.content); } ``` # Prompt Render Source: https://docs.portkey.ai/docs/api-reference/inference-api/prompts/render post /prompts/{promptId}/render Renders a prompt template with its variable values filled in Given a prompt ID, variable values, and *optionally* any hyperparameters, this API returns a JSON object containing the **raw prompt template**. Note: Unlike inference requests, Prompt Render API calls are processed through Portkey's Control Plane services. Here’s how you can take the output from the `render API` and use it for making a separate LLM call. We’ll take example of OpenAI SDKs, but you can use it simlarly for any other frameworks like Langchain etc. as well. ```py OpenAI Python from portkey_ai import Portkey from openai import OpenAI # Retrieving the Prompt from Portkey portkey = Portkey( api_key="PORTKEY_API_KEY" ) render_response = portkey.prompts.render( prompt_id="PROMPT_ID", variables={ "movie":"Dune 2" } ) PROMPT_TEMPLATE = render_response.data # Making a Call to OpenAI with the Retrieved Prompt openai = OpenAI( api_key = "OPENAI_API_KEY", base_url = "https://api.portkey.ai/v1", default_headers = { 'x-portkey-provider': 'openai', 'x-portkey-api-key': 'PORTKEY_API_KEY', 'Content-Type': 'application/json', } ) chat_complete = openai.chat.completions.create(**PROMPT_TEMPLATE) print(chat_complete.choices[0].message.content) ``` ```ts OpenAI NodeJS import Portkey from 'portkey-ai'; import OpenAI from 'openai'; // Retrieving the Prompt from Portkey const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY" }) async function getPromptTemplate() { const render_response = await portkey.prompts.render({ promptID: "PROMPT_ID", variables: { "movie":"Dune 2" } }) return render_response.data; } // Making a Call to OpenAI with the Retrieved Prompt const openai = new OpenAI({ apiKey: 'OPENAI_API_KEY', baseURL: 'https://api.portkey.ai/v1', defaultHeaders: { 'x-portkey-provider': 'openai', 'x-portkey-api-key': 'PORTKEY_API_KEY', 'Content-Type': 'application/json', } }); async function main() { const PROMPT_TEMPLATE = await getPromptTemplate(); const chatCompletion = await openai.chat.completions.create(PROMPT_TEMPLATE); console.log(chatCompletion.choices[0]); } main(); ``` # Response Schema Source: https://docs.portkey.ai/docs/api-reference/inference-api/response-schema With each request, Portkey sends back **Portkey-specific** headers that can help you identify the state of specific Portkey features you are using. We send the following 4 response headers: | Header | Value | | :--------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `x-portkey-trace-id` | Returns a `unique trace id` for each response. In case the user has already sent a trace id with x-portkey-trace-id in their `request body,` then that is used here instead of generating a new id. | | `x-portkey-retry-attempt-count` | Returns the number of `retry attempts` made for the call. Request made for the first time is not counted, `only` the attempts are counted. So, if the value is 3, that means that a total of 4 (1+3) calls were made. | | `x-portkey-cache-status` | Returns the `cache status` for the call. • HIT (simple cache hit) • SEMANTIC HIT (semantic cache hit) • MISS (simple cache header was sent in the request, but returned a miss) • SEMANTIC MISS (semantic cache header was sent in the request, but returned a miss) • DISABLED (no cache header sent) • REFRESH (cache force refresh was true in the request header) | | `x-portkey-last-used-option-index` | Returns the nested `target index` (as jsonpath) for the Config id used while making the call. | # C# (.NET) Source: https://docs.portkey.ai/docs/api-reference/inference-api/sdks/c-sharp Integrate Portkey in your `.NET` app easily using the OpenAI library and get advanced monitoring, routing, and enterprise features. ## Building Enterprise LLM Apps with .NET `.NET` is Microsoft's battle-tested framework trusted by Fortune 500 companies. It's now easier than ever to build LLM apps. You get: | | | | -------------------------- | ----------------------------------------------------------------------- | | **Battle-Tested Security** | Built-in identity management, secret rotation, and compliance standards | | **Production Performance** | High-throughput processing with advanced memory management | | **Azure Integration** | Seamless Azure OpenAI and Active Directory support | Combined with Portkey's enterprise features, you get everything needed for mission-critical LLM deployments. Monitor costs, ensure reliability, maintain compliance, and scale with confidence. ## Portkey Features | | | | :------------------------- | :---------------------------------------------------------------------------------------------------- | | **Complete Observability** | Monitor costs, latency, and performance metrics | | **Provider Flexibility** | Route to 250+ LLMs (like Claude, Gemini, Llama, self-hosted etc.) without code changes | | **Smart Caching** | Reduce costs & time by caching frequent requests | | **High Reliability** | Automatic fallback and load balancing across providers | | **Prompt Management** | Use Portkey as a centralized hub to version, experiment with prompts, and call them using a single ID | | **Continuous Improvement** | Improve your app by capturing and analyzing user feedback | | **Enterprise Ready** | Budget controls, rate limits, model-provisioning, and role-based access | ## Supported Clients | | | | ----------------- | ----------------- | | `ChatClient` | ✅ Fully Supported | | `EmbeddingClient` | ✅ Fully Supported | | `ImageClient` | 🚧 Coming Soon | | `BatchClient` | 🚧 Coming Soon | | `AudioClient` | 🚧 Coming Soon | ## Implementation Overview 1. Install OpenAI SDK 2. Create Portkey client by extending OpenAI client 3. Use the client in your application to make requests ### 1. Install the NuGet package Add the OpenAI [NuGet](https://www.nuget.org/) package to your .NET project: ```sh dotnet add package OpenAI ``` ### 2. Create Portkey Client Extension The OpenAI package does not support directly modifying the base URL or passing additional headers. So, we write a simple function to extend OpenAI's `ChatClient` or `EmbeddingClient` to create a new `PortkeyClient`. ```csharp using OpenAI; using OpenAI.Chat; using System.ClientModel; using System.ClientModel.Primitives; public static class PortkeyClient { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static OpenAIClient CreateClient(Dictionary headers) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options); } public static ChatClient CreateChatClient(Dictionary headers, string model) { var client = CreateClient(headers); return client.GetChatClient(model); } } ``` ```csharp using OpenAI; using OpenAI.Embeddings; using System.ClientModel; using System.ClientModel.Primitives; public static class PortkeyClient { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static EmbeddingClient CreateEmbeddingClient(Dictionary headers, string model) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options).GetEmbeddingClient(model); } } ``` ### 3. Use the Portkey Client After creating the extension above, you can pass any [Portkey supported headers](/api-reference/inference-api/headers) directly while creating the new client. ```csharp // Define Portkey headers var headers = new Dictionary { // Required headers { "x-portkey-api-key", "..." }, // Your Portkey API key { "x-portkey-virtual-key", "..." }, // Virtual key for provider // Optional headers { "x-portkey-trace-id", "my-app" }, // Custom trace identifier { "x-portkey-config", "..." }, // Send Config ID // Add any other Portkey headers as needed }; // Create client var client = PortkeyClient.CreateChatClient( headers: headers, model: "gpt-4" ); // Make request var response = client.CompleteChat(new UserChatMessage("Yellow!")); Console.WriteLine(response.Value.Content[0].Text); ``` ```csharp // Define Portkey headers var headers = new Dictionary { // Required headers { "x-portkey-api-key", "..." }, // Your Portkey API key { "x-portkey-virtual-key", "..." }, // Virtual key for provider // Optional headers { "x-portkey-trace-id", "..." }, // Custom trace identifier { "x-portkey-config", "..." }, // Send Config ID // Add any other Portkey headers as needed }; // Create embedding client through Portkey var client = PortkeyClient.CreateEmbeddingClient( headers: headers, model: "text-embedding-3-large" ); // Text that we want to embed string description = "Best hotel in town if you like luxury hotels. They have an amazing infinity pool, a spa," + " and a really helpful concierge. The location is perfect -- right downtown, close to all the tourist" + " attractions. We highly recommend this hotel."; // Generate embedding var embeddingResult = client.GenerateEmbedding(description); var vector = embeddingResult.Value.ToFloats(); Console.WriteLine($"Full embedding dimensions: {vector.Length}"); ``` While we show common headers here, you can pass any Portkey-supported headers to enable features like custom metadata, fallbacks, caching, retries, and more. ### 4. View Your Request in Portkey Logs This request will now be logged on Portkey: # Chat Completions Example Save your Azure OpenAI details [on Portkey](/integrations/llms/azure-openai#portkey-sdk-integration-with-azure-openai) to get a virtual key. ```csharp using OpenAI; using OpenAI.Chat; using System.ClientModel; using System.ClientModel.Primitives; public static class Portkey { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static ChatClient CreateChatClient(Dictionary headers, string model) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options).GetChatClient(model); } } public class Program { public static void Main() { var client = Portkey.CreateChatClient( headers: new Dictionary { { "x-portkey-api-key", "PORTKEY API KEY" }, { "x-portkey-virtual-key", "AZURE VIRTUAL KEY" }, { "x-portkey-trace-id", "dotnet" } }, model: "dummy" // We pass "dummy" here because for Azure the model can be configured with the virtual key ); Console.WriteLine(client.CompleteChat(new UserChatMessage("1729")).Value.Content[0].Text); } } ``` # Embedding Example ```csharp using OpenAI; using OpenAI.Embeddings; using System.ClientModel; using System.ClientModel.Primitives; public static class PortkeyClient { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static EmbeddingClient CreateEmbeddingClient(Dictionary headers, string model) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options).GetEmbeddingClient(model); } } class Program { static void Main() { // Define Portkey headers var headers = new Dictionary { // Required headers { "x-portkey-api-key", "..." }, // Your Portkey API key { "x-portkey-virtual-key", "..." }, // Virtual key for provider // Optional headers { "x-portkey-trace-id", "..." }, // Custom trace identifier { "x-portkey-config", "..." }, // Send Config ID // Add any other Portkey headers as needed }; // Create embedding client through Portkey var client = PortkeyClient.CreateEmbeddingClient( headers: headers, model: "text-embedding-3-large" ); // Text that we want to embed string description = "Best hotel in town if you like luxury hotels. They have an amazing infinity pool, a spa," + " and a really helpful concierge. The location is perfect -- right downtown, close to all the tourist" + " attractions. We highly recommend this hotel."; // Generate embedding var embeddingResult = client.GenerateEmbedding(description); var vector = embeddingResult.Value.ToFloats(); Console.WriteLine($"Full embedding dimensions: {vector.Length}"); } } ``` # Microsoft Semantic Kernel Example We can make use of the [Portkey client we created above](/api-reference/inference-api/sdks/c-sharp#2-create-portkey-client-extension) to initialize the Semantic Kernel. (Please make use of the `CreateClient` method and not `CreateChatClient` method to create the client) ```csharp using Microsoft.SemanticKernel; using Microsoft.SemanticKernel.ChatCompletion; public class Program { public static async Task Main() { var headers = new Dictionary { // Required headers { "x-portkey-api-key", "..." }, // Your Portkey API key { "x-portkey-virtual-key", "..." }, // Virtual key for provider // Optional headers // { "x-portkey-trace-id", "my-app" }, // Custom trace identifier // { "x-portkey-config", "..." }, // Send Config ID // Add any other Portkey headers as needed }; // Create client var client = PortkeyClient.CreateClient(headers); var builder = Kernel.CreateBuilder().AddOpenAIChatCompletion("gpt-4", client); Kernel kernel = builder.Build(); var chatCompletionService = kernel.GetRequiredService(); var history = new ChatHistory(); // Initiate a back-and-forth chat string? userInput; do { // Collect user input Console.Write("User > "); userInput = Console.ReadLine(); // Add user input history.AddUserMessage(userInput); // Get the response from the AI var result = await chatCompletionService.GetChatMessageContentAsync( history, null, kernel: kernel); // Print the results Console.WriteLine("Assistant > " + result); // Add the message from the agent to the chat history history.AddMessage(result.Role, result.Content ?? string.Empty); } while (userInput is not null); } } ``` ## More Features You can also use the `PortkeyClient` to send `Async` requests: ```csharp var completion = await client.CompleteChatAsync(new UserChatMessage("Hello!")); Console.WriteLine(completion.Value.Content[0].Text); ``` Use the `SystemChatMessage` and `UserChatMessage` properties from the OpenAI package to create multi-turn conversations: ```csharp var messages = new List { new SystemChatMessage("You are a helpful assistant."), new UserChatMessage("What is the capital of France?") }; var completion = client.CompleteChat(messages); messages.Add(new AssistantChatMessage(completion)); ``` Switching providers is just a matter of swapping out your virtual key. Change the virtual key to Anthropic, set the model name, and start making requests to Anthropic from the OpenAI .NET library. ```csharp {41,44} using OpenAI; using OpenAI.Chat; using System.ClientModel; using System.ClientModel.Primitives; public static class Portkey { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static ChatClient CreateChatClient(Dictionary headers, string model) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options).GetChatClient(model); } } public class Program { public static void Main() { var client = Portkey.CreateChatClient( headers: new Dictionary { { "x-portkey-api-key", "PORTKEY API KEY" }, { "x-portkey-virtual-key", "ANTHROPIC VIRTUAL KEY" }, { "x-portkey-trace-id", "dotnet" } }, model: "claude-3-5-sonnet-20240620" ); Console.WriteLine(client.CompleteChat(new UserChatMessage("1729")).Value.Content[0].Text); } } ``` Similarly, just change your virtual key to Vertex virtual key: ```csharp {41,44} using OpenAI; using OpenAI.Chat; using System.ClientModel; using System.ClientModel.Primitives; public static class Portkey { private class HeaderPolicy : PipelinePolicy { private readonly Dictionary _headers; public HeaderPolicy(Dictionary headers) => _headers = headers; public override void Process(PipelineMessage message, IReadOnlyList pipeline, int index) { foreach (var header in _headers) message.Request.Headers.Set(header.Key, header.Value); if (index < pipeline.Count) pipeline[index].Process(message, pipeline, index + 1); } public override ValueTask ProcessAsync(PipelineMessage message, IReadOnlyList pipeline, int index) { Process(message, pipeline, index); return ValueTask.CompletedTask; } } public static ChatClient CreateChatClient(Dictionary headers, string model) { var options = new OpenAIClientOptions { Endpoint = new Uri("https://api.portkey.ai/v1") }; options.AddPolicy(new HeaderPolicy(headers), PipelinePosition.PerCall); return new OpenAIClient(new ApiKeyCredential("dummy"), options).GetChatClient(model); } } public class Program { public static void Main() { var client = Portkey.CreateChatClient( headers: new Dictionary { { "x-portkey-api-key", "PORTKEY API KEY" }, { "x-portkey-virtual-key", "VERTEX AI VIRTUAL KEY" }, { "x-portkey-trace-id", "dotnet" } }, model: "gemini-1.5-pro-002" ); Console.WriteLine(client.CompleteChat(new UserChatMessage("1729")).Value.Content[0].Text); } } ``` # Next Steps * [Call local models](/integrations/llms/byollm) * [Enable cache](/product/ai-gateway/cache-simple-and-semantic) * [Setup fallbacks](/product/ai-gateway/fallbacks) * [Loadbalance requests against multiple instances](/product/ai-gateway/load-balancing) * [Append metadata with requests](/product/observability/metadata) # Need Help? Ping the Portkey team on our [Developer Forum](https://portkey.wiki/community) or email us at [support@portkey.ai](mailto:support@portkey.ai) # Supported Libraries Source: https://docs.portkey.ai/docs/api-reference/inference-api/sdks/supported-sdks Use Portkey APIs in your preferred programming language Coming Soon Coming Soon Coming Soon # Support Want to use Portkey with a library not supported here? Just mail us at [support@portkey.ai](mailto:support@portkey.ai) with your requirements. If you are facing issues with any integration, [schedule a call here](https://portkey.sh/demo-15) to chat with the Portkey team. # Supported Providers Source: https://docs.portkey.ai/docs/api-reference/inference-api/supported-providers | Provider | Chat | Chat - Vision | Embeddings | Images | Audio | Fine-tuning | Batch | Files | Moderations | Assistants | Completions | Portkey Prompts | Chat - Tools | | :-------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | :------------------------------------------- | | AI21 | | | | | | | | | | | | | | | Anthropic | | | | | | | | | | | | | | | Anyscale | | | | | | | | | | | | | | | Azure OpenAI | | | | | | | | | | | | | | | AWS Bedrock | | | | | | | | | | | | | | | Cohere | | | | | | | | | | | | | | | Deepinfra | | | | | | | | | | | | | | | Fireworks AI | | | | | | | | | | | | | | | Google Vertex AI | | | | | | | | | | | | | | | Google Gemini | | | | | | | | | | | | | | | Groq | | | | | | | | | | | | | | | Jina | | | | | | | | | | | | | | | Lingyi (01.ai) | | | | | | | | | | | | | | | Mistral AI | | | | | | | | | | | | | | | Monster API | | | | | | | | | | | | | | | Moonshot.cn | | | | | | | | | | | | | | | Nomic AI | | | | | | | | | | | | | | | Novita AI | | | | | | | | | | | | | | | Ollama | | | | | | | | | | | | | | | OpenAI | | | | | | | | | | | | | | | Openrouter | | | | | | | | | | | | | | | Perplexity AI | | | | | | | | | | | | | | | Predibase | | | | | | | | | | | | | | | Reka AI | | | | | | | | | | | | | | | Segmind | | | | | | | | | | | | | | | Stability AI | | | | | | | | | | | | | | | Together AI | | | | | | | | | | | | | | | Cloudflare Workers AI | | | | | | | | | | | | | | | Zhipu AI | | | | | | | | | | | | | | While you're here, why not [give us a star](https://git.new/ai-gateway-docs)? It helps us a lot! # Portkey SDK Source: https://docs.portkey.ai/docs/api-reference/portkey-sdk-client The Portkey SDK client enables various features of Portkey in an easy to use `config-as-code` paradigm. ## Install the Portkey SDK Add the Portkey SDK to your application to interact with Portkey's gateway. ```sh npm install --save portkey-ai ``` ```sh pip install portkey-ai ``` ## Export Portkey API Key ```sh export PORTKEY_API_KEY="" ``` ## Basic Client Setup The basic Portkey SDK client needs ***2 required parameters*** 1. The Portkey Account's API key to authenticate all your requests 2. The [virtual key](/product/ai-gateway/virtual-keys#using-virtual-keys) of the AI provider you want to use OR The [config](/api-reference/inference-api/config-object) being used This is achieved through headers when you're using the REST API. For example, ```js import Portkey from 'portkey-ai'; // Construct a client with a virtual key const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", virtualKey: "VIRTUAL_KEY" }) // Construct a client with a config id const portkey = new Portkey({ apiKey: "PORTKEY_API_KEY", config: "cf-***" // Supports a string config slug or a config object }) ``` ```python from portkey_ai import Portkey # Construct a client with a virtual key portkey = Portkey( api_key="PORTKEY_API_KEY", virtual_key="VIRTUAL_KEY" ) # Construct a client with provider and provider API key portkey = Portkey( api_key="PORTKEY_API_KEY", config="cf-***" # Supports a string config slug or a config object ) ``` ```sh curl https://api.portkey.ai/v1/chat/completions \ -H "Content-Type: application/json" \ -H "x-portkey-api-key: $PORTKEY_API_KEY" \ -H "x-portkey-virtual-key: $VIRTUAL_KEY" \ -d '{ "model": "gpt-3.5-turbo", "messages": [{"role": "user","content": "Hello!"}] }' curl https://api.portkey.ai/v1/chat/completions \ -H 'Content-Type: application/json' \ -H 'x-portkey-api-key: $PORTKEY_API_KEY' \ -H 'x-portkey-config: cf-***' \ -d '{ "model": "gpt-3.5-turbo", "messages": [{"role": "user","content": "Hello!"}] }' ``` Find more info on what's available through [configs here](/api-reference/inference-api/config-object). ## Making a Request You can then use the client to make completion and other calls like this ```js const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-3.5-turbo', }); console.log(chatCompletion.choices); ``` ```py completion = portkey.chat.completions.create( messages = [{ "role": 'user', "content": 'Say this is a test' }], model = 'gpt-3.5-turbo' ) ``` ## Passing Trace ID or Metadata You can choose to override the configuration in individual requests as well and send trace id or metadata along with each request. ```js const chatCompletion = await portkey.chat.completions.create({ messages: [{ role: 'user', content: 'Say this is a test' }], model: 'gpt-3.5-turbo', }, { traceId: "39e2a60c-b47c-45d8", metadata: {"_user": "432erf6"} }); console.log(chatCompletion.choices); ``` ```py completion = portkey.with_options( trace_id = "TRACE_ID", metadata = {"_user": "USER_IDENTIFIER"} ).chat.completions.create( messages = [{ "role": 'user', "content": 'Say this is a test' }], model = 'gpt-3.5-turbo' ) ``` ## Async Usage Portkey's Python SDK supports **Async** usage - just use `AsyncPortkey` instead of `Portkey` with `await`: ```Python Python import asyncio from portkey_ai import AsyncPortkey portkey = AsyncPortkey( api_key="PORTKEY_API_KEY", virtual_key="VIRTUAL_KEY" ) async def main(): chat_completion = await portkey.chat.completions.create( messages=[{'role': 'user', 'content': 'Say this is a test'}], model='gpt-4' ) print(chat_completion) asyncio.run(main()) ``` *** ## Parameters Following are the parameter keys that you can add while creating the Portkey client. Keeping in tune with the most popular language conventions, we use: * **camelCase** for **Javascript** keys * **snake\_case** for **Python** keys * **hyphenated-keys** for the **headers** | Parameter | Type | Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | -------------------------------------------------------------------------- | | **API Key** Your Portkey account's API Key. | stringrequired | `apiKey` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `virtualKey` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | stringobject | `config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | `baseURL` | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `traceID` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | object | `metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `cacheForceRefresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers. | string | `cacheNamespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `customHost` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `forwardHeaders` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `azureResourceName` `azureDeploymentId` `azureApiVersion` `azureModelName` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `vertexProjectId` `vertexRegion` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `awsAccessKeyId` `awsSecretAccessKey` `awsRegion` `awsSessionToken` | | Parameter | Type | Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | ---------------------------------------------------------------------------------- | | **API Key** Your Portkey account's API Key. | stringrequired | `api_key` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `virtual_key` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | stringobject | `config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | `base_url` | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `trace_id` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | object | `metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `cache_force_refresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers. | string | `cache_namespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `custom_host` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `forward_headers` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `azure_resource_name` `azure_deployment_id` `azure_api_version` `azure_model_name` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `vertex_project_id` `vertex_region` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `aws_access_key_id` `aws_secret_access_key` `aws_region` `aws_session_token` | | Parameter | Type | Header Key | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------- | ------------------------------------------------------------------------------------------------------------------------------------ | | **API Key** Your Portkey account's API Key. | stringrequired | `x-portkey-api-key` | | **Virtual Key** The virtual key created from Portkey's vault for a specific provider | string | `x-portkey-virtual-key` | | **Config** The slug or [config object](/api-reference/inference-api/config-object) to use | string | `x-portkey-config` | | **Provider** The AI provider to use for your calls. ([supported providers](/integrations/llms#supported-ai-providers)). | string | `x-portkey-provider` | | **Base URL** You can edit the URL of the gateway to use. Needed if you're [self-hosting the AI gateway](https://github.com/Portkey-AI/gateway/blob/main/docs/installation-deployments.md) | string | Change the request URL | | **Trace ID** An ID you can pass to refer to 1 or more requests later on. Generated automatically for every request, if not sent. | string | `x-portkey-trace-id` | | **Metadata** Any metadata to attach to the requests. These can be filtered later on in the analytics and log dashboards Can contain `_prompt`, `_user`, `_organisation`, or `_environment` that are special metadata types in Portkey. You can also send any other keys as part of this object. | string | `x-portkey-metadata` | | **Cache Force Refresh** Force refresh the cache for your request by making a new call and storing that value. | boolean | `x-portkey-cache-force-refresh` | | **Cache Namespace** Partition your cache based on custom strings, ignoring metadata and other headers | string | `x-portkey-cache-namespace` | | **Custom Host** Route to locally or privately hosted model by configuring the API URL with custom host | string | `x-portkey-custom-host` | | **Forward Headers** Forward sensitive headers directly to your model's API without any processing from Portkey. | array of string | `x-portkey-forward-headers` | | **Azure OpenAI Headers** Configuration headers for Azure OpenAI that you can send separately | string | `x-portkey-azure-resource-name` `x-portkey-azure-deployment-id` `x-portkey-azure-api-version` `api-key` `x-portkey-azure-model-name` | | **Google Vertex AI Headers** Configuration headers for Vertex AI that you can send separately | string | `x-portkey-vertex-project-id` `x-portkey-vertex-region` | | **AWS Bedrock Headers** Configuration headers for Bedrock that you can send separately | string | `x-portkey-aws-session-token` `x-portkey-aws-secret-access-key` `x-portkey-aws-region x-portkey-aws-session-token` | # December Source: https://docs.portkey.ai/docs/changelog/2024/dec **Ending the year with MCP, intelligence, and enterprise controls! 🛠️** This month we [announced our MCP(Model Context Protocol)](https://portkey.ai/mcp) product - enabling LLMs to leverage 800+ tools through a unified interface. We've also added dynamic usage limits on keys, integrated OpenAI's realtime API, and some new Guardrails. OpenAI's o1, Llama 3.3 models, Gemini & Perplexity's grounding features, and the entire HuggingFace model garden on Vertex AI are also available on Portkey now. For enterprises, we're introducing comprehensive SSO/SCIM support, enhanced usage controls, and more. Let's explore what's new! ## Summary | Area | Key Updates | | :----------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | Platform | • Announced Portkey MCP Client with support for 800+ tools
• Set Usage & budget limits for keys
• New strict OpenAI compliance mode | | Integrations | • Support for o1 and Llama 3.3
• Full HuggingFace model garden on Vertex AI
• Support for Amazon Nova models
• Gemini grounding mode for search-backed responses
• Anthropic's new PDF input capabilities
• Microsoft Semantic Kernel integration
• Realtime API support | | Enterprise | • Flexible SSO/SCIM for any OIDC/SAML provider

• New workspace management APIs | | Guardrail | • New guardrail integrations with Promptfoo, and Mistral Moderations
• Enhanced regex guardrail capabilities | ## Model Context Protocol