Getting Started
Integrations
Use Cases
- Overview
- Few-Shot Prompting
- Enforcing JSON Schema with Anyscale & Together
- Detecting Emotions with GPT-4o
- Build an article suggestion app with Supabase pgvector, and Portkey
- Setting up resilient Load balancers with failure-mitigating Fallbacks
- Run Portkey on Prompts from Langchain Hub
- Smart Fallback with Model-Optimized Prompts
- How to use OpenAI SDK with Portkey Prompt Templates
- Setup OpenAI -> Azure OpenAI Fallback
- Fallback from SDXL to Dall-e-3
- Comparing Top10 LMSYS Models with Portkey
- Build a chatbot using Portkey's Prompt Templates
Getting started with AI Gateway
Portkey is the Control Panel for AI apps. With itβs popular AI Gateway and Observability Suite, hundreds of teams ship reliable, cost-efficient, and fast apps.
Quickstart
Since Portkey is fully compatible with the OpenAI signature, you can connect to the Portkey AI Gateway through OpenAI Client.
- Set the
base_url
asPORTKEY_GATEWAY_URL
- Add
default_headers
to consume the headers needed by Portkey using thecreateHeaders
helper method.
Install the OpenAI and Portkey SDK
pip install -qU portkey-ai openai
Create the client
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="openai", # π or 'anthropic', 'together-ai', 'stability-ai', etc
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
Examples
OpenAI Chat Completion
Provider: openai
Model being tested here: gpt-4o-mini
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="openai",
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "What is a fractal?"}],
)
A fractal is a complex geometric shape that can be split into parts, each of which is a reduced-scale of the whole. Fractals are typically self-similar and independent of scale, meaning they look similar at any zoom level. They often appear in nature, in things like snowflakes, coastlines, and fern leaves. The term "fractal" was coined by mathematician Benoit Mandelbrot in 1975.
Anthropic
Provider: anthropic
Model being tested here: claude-3-5-sonnet-20240620
PythonJS/TScURL
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="anthropic",
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
client.chat.completions.create(
model="claude-3-5-sonnet-20240620",
messages=[{"role": "user", "content": "What is a fractal?"}],
max_tokens=250
)
A fractal is a complex geometric shape that can be split into parts, each of which is a reduced-scale of the whole. Fractals are typically self-similar and independent of scale, meaning they look similar at any zoom level. They often appear in nature, in things like snowflakes, coastlines, and fern leaves. The term "fractal" was coined by mathematician Benoit Mandelbrot in 1975.
Mistral AI
Provider: mistral-ai
Model being tested here: mistral-medium
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="mistral-ai",
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
client.chat.completions.create(
model="mistral-medium",
messages=[{"role": "user", "content": "What is a fractal?"}],
)
A fractal is a complex geometric shape that can be spl
Together AI
Provider: together-ai
Model being tested here: togethercomputer/llama-2-70b-chat
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="together-ai",
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
client.chat.completions.create(
model="togethercomputer/llama-2-70b-chat",
messages=[{"role": "user", "content": "What is a fractal?"}],
)
A fractal is a complex geometric shape that can be spl
Portkey Supports other Providers
Portkey supports 30+ providers and all the models within those providers. To use these different providers and models with OpenAIβs SDK, you just need to change the provider
and model names
in your code with their respective auth keys. Itβs that easy!
If you want to see all the providers Portkey works with, check out the list of providers.
OpenAI Embeddings
PythonNodeJS
import os
from openai import OpenAI
from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
base_url=PORTKEY_GATEWAY_URL, # π or 'http://localhost:8787/v1'
default_headers=createHeaders(
provider="openai",
api_key=os.environ.get("PORTKEY_API_KEY") # π skip when self-hosting
)
)
def get_embedding(text, model="text-embedding-3-small"):
text = text.replace("\n", " ")
return client.embeddings.create(input = [text], model=model).data[0].embedding
df['ada_embedding'] = df.combined.apply(lambda x: get_embedding(x, model='text-embedding-3-small'))
df.to_csv('output/embedded_1k_reviews.csv', index=False)
OpenAI Function Calling
OpenAI NodeJSOpenAI PythonNodeJSPythonREST
import OpenAI from 'openai'; // We're using the v4 SDK
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const openai = new OpenAI({
apiKey: 'OPENAI_API_KEY', // defaults to process.env["OPENAI_API_KEY"],
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
provider: "openai",
apiKey: "PORTKEY_API_KEY" // defaults to process.env["PORTKEY_API_KEY"]
})
});
// Generate a chat completion with streaming
async function getChatCompletionFunctions(){
const messages = [{"role": "user", "content": "What is the weather like in Boston today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response)
}
await getChatCompletionFunctions();
OpenAI Chat-Vision
import OpenAI from 'openai'; // We're using the v4 SDK
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const openai = new OpenAI({
apiKey: 'OPENAI_API_KEY', // defaults to process.env["OPENAI_API_KEY"],
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
provider: "openai",
apiKey: "PORTKEY_API_KEY" // defaults to process.env["PORTKEY_API_KEY"]
})
});
// Generate a chat completion with streaming
async function getChatCompletionFunctions(){
const response = await openai.chat.completions.create({
model: "gpt-4-vision-preview",
messages: [
{
role: "user",
content: [
{ type: "text", text: "Whatβs in this image?" },
{
type: "image_url",
image_url:
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
},
],
});
console.log(response)
}
await getChatCompletionFunctions();
Images
import OpenAI from 'openai'; // We're using the v4 SDK
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const openai = new OpenAI({
apiKey: 'OPENAI_API_KEY', // defaults to process.env["OPENAI_API_KEY"],
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
provider: "openai",
apiKey: "PORTKEY_API_KEY" // defaults to process.env["PORTKEY_API_KEY"]
})
});
async function main() {
const image = await openai.images.generate({
model: "dall-e-3",
prompt: "Lucy in the sky with diamonds"
});
console.log(image.data);
}
main();
OpenAI Audio
Hereβs an example of Text-to-Speech
import fs from "fs";
import OpenAI from "openai";
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const openai = new OpenAI({
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
apiKey: "PORTKEY_API_KEY",
virtualKey: "OPENAI_VIRTUAL_KEY"
})
});
// Transcription
async function transcribe() {
const transcription = await openai.audio.transcriptions.create({
file: fs.createReadStream("/path/to/file.mp3"),
model: "whisper-1",
});
console.log(transcription.text);
}
transcribe();
// Translation
async function translate() {
const translation = await openai.audio.translations.create({
file: fs.createReadStream("/path/to/file.mp3"),
model: "whisper-1",
});
console.log(translation.text);
}
translate();
OpenAI Batch - Create Batch
import OpenAI from 'openai';
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const client = new OpenAI({
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
apiKey: "PORTKEY_API_KEY",
virtualKey: "PROVIDER_VIRTUAL_KEY"
})
});
async function main() {
const batch = await client.batches.create({
input_file_id: "file-abc123",
endpoint: "/v1/chat/completions",
completion_window: "24h"
});
console.log(batch);
}
main();
Files - Upload File
import fs from "fs";
import OpenAI from 'openai';
import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai'
const client = new OpenAI({
baseURL: PORTKEY_GATEWAY_URL,
defaultHeaders: createHeaders({
apiKey: "PORTKEY_API_KEY",
virtualKey: "PROVIDER_VIRTUAL_KEY"
})
});
async function main() {
const file = await client.files.create({
file: fs.createReadStream("mydata.jsonl"),
purpose: "batch",
});
console.log(file);
}
main();
Was this page helpful?